Oscillation criteria for third-order linear differential equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation Criteria for Third-order Functional Differential Equations with Damping

This paper is a continuation of the recent study by Bohner et al [9] on oscillation properties of nonlinear third order functional differential equation under the assumption that the second order differential equation is nonoscillatory. We consider both the delayed and advanced case of the studied equation. The presented results correct and extend earlier ones. Several illustrative examples are...

متن کامل

Oscillation criteria for third-order delay differential equations

By a solution of (.) wemean a function y(t) ∈ C[ty,∞) which has the property r(t)y′(t) ∈ C[ty,∞) and r(t)(r(t)y′(t))′ ∈ C[ty,∞) and satisfies (.) on [ty,∞) for every t ≥ ty ≥ t. We restrict our attention to those solutions of (.) which exist on I and satisfy the condition sup{|x(t)| : t ≥ t} >  for any t ≥ ty. We assume that (.) possesses such a solution. A solution y(t) of (...

متن کامل

On Oscillation Criteria for Third Order Nonlinear Delay Differential Equations

In this paper we are concerned with the oscillation of third order nonlinear delay differential equations of the form ( r2 (t) ( r1 (t)x′ )′)′ + p (t)x′ + q (t) f (x (g (t))) = 0. We establish some new sufficient conditions which insure that every solution of this equation either oscillates or converges to zero.

متن کامل

Oscillation Criteria for Second-order Linear Differential Equations^)

where p(x) is a continuous positive function for 0<x< oo. Equation (1) is said to be nonoscillatory in (a, oo) if no solution of (1) vanishes more than once in this interval. Because of the Sturm separation theorem, this is equivalent to the existence of a solution which does not vanish at all in (a, oo). The equation will be called nonoscillatory—without the interval being mentioned —if there ...

متن کامل

Oscillation and Nonoscillation Criteria for Second-order Linear Differential Equations

Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1961

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1961.11.919